Characterization of the substrate specificity of PhlD, a type III polyketide synthase from Pseudomonas fluorescens.

نویسندگان

  • Wenjuan Zha
  • Sheryl B Rubin-Pitel
  • Huimin Zhao
چکیده

PhlD, a type III polyketide synthase from Pseudomonas fluorescens, catalyzes the synthesis of phloroglucinol from three molecules of malonyl-CoA. Kinetic analysis by direct measurement of the appearance of the CoASH product (k(cat) = 24 +/- 4 min(-1) and Km = 13 +/- 1 microM) gave a k(cat) value more than an order of magnitude higher than that of any other known type III polyketide synthase. PhlD exhibits broad substrate specificity, accepting C4-C12 aliphatic acyl-CoAs and phenylacetyl-CoA as the starters to form C6-polyoxoalkylated alpha-pyrones from sequential condensation with malonyl-CoA. Interestingly, when primed with long chain acyl-CoAs, PhlD catalyzed extra polyketide elongation to form up to heptaketide products. A homology structural model of PhlD showed the presence of a buried tunnel extending out from the active site to assist the binding of long chain acyl-CoAs. To probe the structural basis for the unusual ability of PhlD to accept long chain acyl-CoAs, both site-directed mutagenesis and saturation mutagenesis were carried out on key residues lining the tunnel. Three mutations, M21I, H24V, and L59M, were found to significantly reduce the reactivity of PhlD with lauroyl-CoA while still retaining its physiological activity to synthesize phloroglucinol. Our homology modeling and mutational studies indicated that even subtle changes in the tunnel volume could affect the ability of PhlD to accept long chain acyl-CoAs. This suggested novel strategies for combinatorial biosynthesis of unnatural pharmaceutically important polyketides.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Exploiting genetic diversity by directed evolution: molecular breeding of type III polyketide synthases improves productivity.

Applying directed evolution to the phloroglucinol synthase PhlD from Pseudomonas fluorescens Pf-5 has provided the first example of engineering enhanced productivity in a type III polyketide synthase, and a rare instance of improving the activity of a biosynthetic enzyme from secondary metabolism.

متن کامل

Identification and characterization of a gene cluster for synthesis of the polyketide antibiotic 2,4-diacetylphloroglucinol from Pseudomonas fluorescens Q2-87.

The polyketide metabolite 2,4-diacetylphloroglucinol (2,4-DAPG) is produced by many strains of fluorescent Pseudomonas spp. with biocontrol activity against soilborne fungal plant pathogens. Genes required for 2,4-DAPG synthesis by P. fluorescens Q2-87 are encoded by a 6.5-kb fragment of genomic DNA that can transfer production of 2,4-DAPG to 2,4-DAPG-nonproducing recipient Pseudomonas strains....

متن کامل

Cloning and characterization of a type III polyketide synthase from Aspergillus niger.

Type III polyketide synthases (PKSs) are the condensing enzymes that catalyze the formation of a myriad of aromatic polyketides in plant, bacteria, and fungi. Here we report the cloning and characterization of a putative type III PKS from Aspergillusniger, AnPKS. This enzyme catalyzes the synthesis of alkyl pyrones from C2 to C18 starter CoA thioesters with malonyl-CoA as an extender CoA throug...

متن کامل

Distinct structural elements dictate the specificity of the type III pentaketide synthase from Neurospora crassa.

The fungal type III polyketide synthase 2'-oxoalkylresorcylic acid synthase (ORAS) primes with a range of acyl-Coenzyme A thioesters (C4-C20) and extends using malonyl-Coenzyme A to produce pyrones, resorcinols, and resorcylic acids. To gain insight into this unusual substrate specificity and product profile, we have determined the crystal structures of ORAS to 1.75 A resolution, the Phe-252-->...

متن کامل

Systematic analysis of the kalimantacin assembly line NRPS module using an adapted targeted mutagenesis approach

Kalimantacin is an antimicrobial compound with strong antistaphylococcal activity that is produced by a hybrid trans-acyltransferase polyketide synthase/nonribosomal peptide synthetase system in Pseudomonas fluorescens BCCM_ID9359. We here present a systematic analysis of the substrate specificity of the glycine-incorporating adenylation domain from the kalimantacin biosynthetic assembly line b...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 281 42  شماره 

صفحات  -

تاریخ انتشار 2006